Future of LDL Therapy

Sergio Fazio, MD, PhD

Professor of Medicine and Pathology
Director, Vanderbilt Lipid Laboratory
Co-Director, Atherosclerosis Research Unit
Vanderbilt University School of Medicine
Nashville, Tennessee

Disclosure

Sergio Fazio, MD, PhD

Employment: Vanderbilt University

Research Support: NIH-NHLBI

Clinical Research: ISIS/Genzyme

Advisory: Merck, Takeda, Pfizer, Astra-Zeneca

Response-to-Retention Model of Atherosclerosis

- Lipoproteins are retained by the subendothelial matrix
- Retention leads to LDL oxidation and activation of the inflammatory response

1. Tabas I et al. *Circulation.* 2007;116:1832–1844. 2. Khalil MF et al. *Arterioscler Thromb Vasc Biol.* 2004;24:2211–2218. 3. Jialal I et al. *Circulation.* 2003;107:926–928.

Association Between LDL-C and CHD Risk

Total Cholesterol Predicts CHD Mortality in Diabetic and Nondiabetic Men

Multiple Risk Factor Intervention Trial (MRFIT)

Bierman EL, *Arteriosder Thromb*, June 1992 Based on data from J. Stamler

Reduced CHD Incidence in Individuals With Low LDL-C Levels Due to PCSK9 Mutations

- PCSK9 plays a role in cholesterol homeostasis by regulating LDLR expression
- PCSK9 loss-of-function mutations cause low cholesterol (20% to 40% less than normal)

PCSK9 = proprotein convertase subtilisin/kexin type 9 serine protease.

1. Rashid S et al. *PNAS*. 2005;102(15):5374–5379. 2. Cohen JC et al. *Nat Genet*. 2005;37(2):161–165. 3. Kotowski IK et al. *Am J Hum Genet*. 2006;78(3):410–422. 4. Cohen JC et al. *N Engl J Med*. 2006;354(12):1264–1272.

Benefits of Intensive LDL-C Lowering

Relationship between \LDL-C and atheroma burden

IVUS trials

ASTEROID: IVUS End Points After 24-Month Open-Label Treatment With Rosuvastatin 40 mg

Median % Atheroma Volume

Median Atheroma Volume in Most Diseased Subsegment (mm²)

	Baseline	Follow-up	% Change
Mean LDL-C	130 mg/dL	61 mg/dL	-53

Towards Medical Therapy of Coronary Disease

A. Stop Progression (and stabilize the plaque?):

- 1. Extreme LDL reductions
- 2. Aggressive RF and T2D management
- 3. Maybe direct effects of ACE-I/ARB, Statins, ASA

B. Induce Regression (and stabilize the plaque?):

- 1. Stop progression
- 2. Maybe activation of HDL pathway
- 3. Maybe direct effects of PPAR or LXR agonists

Evolution of LDL-C Goals for High-Risk Patients: NCEP Guidelines

Definition of high-risk or highest-risk patient:

- ATP I: definite CHD or 2 other CHD risk factors¹
- ATP II: prior CHD or other atherosclerotic disease²
- ATP III and the 2004 update: CHD or CHD risk equivalents^{3,4}

- 2° AHA/ACC 2006: established coronary and other atherosclerotic disease⁵
- ADA 2010: overt CVD⁶

1. NCEP ATP I. *Arch Intern Med.* 1988;148:36–69; **2.** NCEP ATP II. *JAMA.* 1993;269:3015–3023; **3.** NCEP ATP III. *JAMA.* 2001;285:2486–2497; **4.** Grundy SM et al. *Circulation*. 2004;110:227–239; **5.** Smith SC Jr et al. *Circulation*. 2006;113:2363–2372; **6.** ADA. *Diabetes Care*. 2010;33(suppl 1):S11–S61.

A Case

56-yo obese man with T2D, HTN, and HLP

Progressive CHD (4 stents in the last 3 years)

T2D: on Metformin 2000 (HbA1c 6.7%)

HTN: controlled on ACE-I and diuretic

HLP: on atorvastatin 80 mg, fish oil supplement, diet (low sugar, low saturated fats, high fiber, plant sterols, almonds, soy protein, cardboard).

Labs:

LDL 110 mg/dl, TG 210 mg/dl, HDL 39 mg/dl

LDL Hypothesis Under Attack

NCEP Guidelines vs. Tailored Treatment*

Treatment	Age 30-75		Age 65-75	
	Any Dose	High Dose	Any Dose	High Dose
NCEP	36.8%	12.3%	66.4%	28.4%
Tailored	36.6%	9.2%	91.7%	41.1%

*Simvastatin 40 mg to subjects on the 5-15% CHD risk range, atorvastatin 80 mg for those >15%.

LDL Hypothesis Under Attack

NCEP Guidelines vs. Tailored Treatment*

Treatment	Age 30-75		Age 65-75	
	Any Dose	High Dose	Any Dose	High Dose
NCEP	36.8%	12.3%	66.4%	28.4%
Tailored	36.6%	9.2%	91.7%	41.1%

*Simvastatin 40 mg to subjects on the 5-15% CHD risk range, atorvastatin 80 mg for those >15%. Below 5%: NO STATIN FOR YOU!

Simvastatin: Major Vascular Events by LDL Cholesterol

Risk ratio and 95% CI

Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20 536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002;360:7-22.

Simvastatin: Major Vascular Events in Upper and Lower Thirds of Baseline LDL

Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20 536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002;360:7-22.

The JUPITER Trial

- 18,000 men and women with LDL<130 and hsCRP>2
- No CHD, Diabetes, HTN, or severe dyslipidemia
- 20 mg of rosuvastatin vs placebo
- Stopped early due to a 47% RRR in primary endpoint
- 50% of subjects had LDL<55, and 25% had LDL<44
- Claimed NNT (projected at 5 years) of 25

Benefits of the Tailored Approach

- Goal (ie, use of statin drug) easier to reach
- Cost containment
- Higher risk reduction rates among the elderly

Negatives of the Tailored Approach

- Under-treatment of women and younger subjects
- Under-treatment of FH
- Under-treatment of combined dyslipidemia
- Disincentive to diagnose dyslipidemia
- Disincentive to new drug development

Brief History of Statins

- Developed as a tool to help subjects with FH
- Proven to benefit patients with common HLP
- Proven to benefit subjects without HLP
- Proven to benefit subjects at any level of risk
- Proposed used shortchanges FH subjects

A Case

56-yo obese man with T2D, HTN, and HLP

Progressive CHD (4 stents in the last 3 years)

T2D: on Metformin 2000 (HbA1c 6.7%)

HTN: controlled on ACE-I and diuretic

HLP: on atorvastatin 80 mg, fish oil supplement, diet (low sugar, low saturated fats, high fiber, plant sterols, almonds, soy protein, cardboard).

Labs:

LDL 110 mg/dl, TG 210 mg/dl, HDL 39 mg/dl

Does glucose control improve CVD risk in diabetics?

- ADVANCE (6% RRR, ns)
- VADT (no effect)
- ACCORD (10% RRR, ns, CV death up 35%)

Treating to New Targets (TNT) Results in Patients With Diabetes: Primary Events

Composite CHD death, nonfatal MI, stroke

MACE = major adverse cardiac event. Shepherd J et al. *Diabetes Care*. 2006;29:1220-1226.

ARBITER 2: Patients With and Without Diabetes or Metabolic Syndrome

Taylor AJ, et al. *Circulation*. 2004;110:3512-3517.

SANDS: Categorical Changes in Intimal Medial Thickness by Treatment Group

LDL 70 vs 100

NEPTUNE II: LDL Goals in High-Risk Patients

NEPTUNE = NCEP Program Evaluation Project Utilizing Novel E-Technology; HTN = hypertension. Davidson MH et al. *Am J Cardiol*. 2005;96(4):556–563.

Get With The Goal: Patients on Lipid-Lowering Therapy at Admission^a for CHD

GWTG = Get With The Guidelines; ACS = acute coronary syndrome; CAD = coronary artery disease. aPatients on lipid-lowering therapy prior to hospitalization (n=28,944).

^{1.} Sachdeva A et al. Am Heart J. 2009;157:111–117.e2.

Triple Therapy Needed by Many

A 64-Week Study on 383 High-Risk Subjects Receiving Ezetimibe/Simvastatin (10/20) +/- ER Niacin (to 2000)

Treatment	LDL<100, apoB<90, non-HDL<130	LDL<70, apoB<80, non-HDL<100
Eze/Simva	58.3%	28.6%
Eze/Simva/ ER Niacin	77.3%	57.1%

Three drugs are not enough to reach the lowest goals. We need new therapies!

Do non-statin drugs improve CVD risk?

- Fibrates (?)
- Ezetimibe (?)
- Niacins (?)
- Omega 3 Fats (✓)
 (but likely not via lipid-lowering)

New LDL Drugs on the Horizon

- ApoB Antisense (mipomersen)
- Selective Thyromimetics (eprotirome)
- PCSK9 Inhibitors
- MTTP Inhibitors

Summary

- LDL lowering is the most effective single CVD risk reduction strategy, with no lower threshold identified
- Statins effectively lower LDL and have produced the bulk of clinical evidence on CVD benefits from lipid modulation.
- An LDL goal of <70 mg/dl is a practical endorsement of widespread use of statin therapy in high-risk subjects; however, combination therapy is needed by many to reach this goal.
- Non-statin drugs must provide proof of benefits to move the field forward and open the way for new, potent, and safe LDL-lowering medications